Comparison Between Different Methods of Feature Extraction in BCI Systems Based on SSVEP

نویسندگان

  • A. ‎Naderi Saatlo‎ Department of Electrical-Electronics Engineering, Urmia Branch‎, ‎Islamic Azad University‎, ‎Urmia‎, ‎Iran.
  • N. ‎Romooz‎ Department of Electrical-Electronics Engineering, Urmia Branch‎, ‎Islamic Azad University‎, ‎Urmia‎, ‎Iran.
  • S. ‎Sheykhivand‎ Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
  • T. ‎Yousefi ‎R‎ezaii‎ Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
چکیده مقاله:

‎There are different feature extraction methods in brain-computer interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) systems‎. ‎This paper presents a comparison of five methods for stimulation frequency detection in SSVEP-based BCI systems‎. ‎The techniques are based on Power Spectrum Density Analysis (PSDA)‎, ‎Fast Fourier Transform (FFT)‎, ‎Hilbert‎- ‎Huang Transform (HHT)‎, ‎Cross Correlation and Canonical Correlation Analysis (CCA)‎. ‎The results demonstrate that the CCA and FFT can be successfully applied for stimulus frequency detection by considering the highest accuracy and minimum consuming ‎time.‎

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Features Extraction Based on Subspace Methods with Application to SSVEP BCI

The considered Human-Computer interface use Electroencephalography (EEG) activity or other electrophysiological measures of brain functions as new non-muscular channels for control and communication with smart devices and smart mobile applications for disabled persons. An approach for features extraction for Steady-State Visual Evoked Potentials-based Brain Computer Interface is presented. It e...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances

در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...

Comparison of PSDA and CCA detection methods in a SSVEP-based BCI-system

Using steady-state visually evoked potential (SSVEP) in braincomputer interface (BCI) systems is the subject of a lot of research. One of the most popular and widely used detection method is using a power spectral density analysis (PSDA). Lately there have been some new methods emerging, one of them is using canonical correlation analysis (CCA) which seems to have some promising improvements an...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 4

صفحات  341- 347

تاریخ انتشار 2017-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023